

Supply Chains of the Future

N Shah
Centre for Process Systems
Engineering
Imperial College
London SW7 2BY

-

CPSE: Chemical/Energy supply/value chain

Supply Chain

- Procurement, processing and distribution of materials
- Optimisation opportunities:
 - □ Infrastructure
 - Planning
 - □ Short-term operation

Infrastructure

- How many plants and where ?
 - □ in-house or outsource?
- What resources in each plant?
- What distribution/warehousing resources
 - own or third party
 - □ share with competitors ?
- What are sensible goals to set?
- Which long-term suppliers?
- What strategic parameters to set for business to run smoothly?

Planning

- Forecasting and demand management
 - □ What are we likely to sell?
 - □ What stocks will we need?
- Production
 - □ What should be made where & how ?
 - e.g. over the next month
 - exploit regional differences to maximise return
 - identify improvements with supply chain impact
- Distribution
 - How best to distribute material
 - consider concurrently with production planning

Short-term operation

- Daily production scheduling at each site
 - □ minimise cost/waste/changeovers
 - □ meet targets set by higher level planning
- Daily vehicle routing
 - □ minimise distance
 - □ maximise capacity utilisation
 - □ explore backhauling opportunities
- Short-term supply chain management
- How do we get the right product in the right place at the right time at the right price?

Supply chain problems

Examples

- Redesign logistics network
- · Campaign planning at a primary manufacturing site
- Real-time supply chain management and control
- Negotiation of long term supply contracts
- Improved design of primary manufacturing processes and plants
- Long-term manufacturing capacity planning and value-chain management

Process industries

- Very broad
- Many companies do not operate at "customer-facing" end of chain, mainly B2B
 - ☐ Affects supply chain performance significantly

Opportunities of digitalisation

- Integration across scales; seamless use of data and models
- Integration across lifecycle (discovery -> operations)
- Integration between real-time, planning and strategy
- "Real-time optimisation" at supply chain level
- Adaptive operation and customisation
- Incorporation of advanced process analytics to reduce testing and improve quality and responsiveness
- **...**

Integration across modelling scales: European feedstock selection and flexible cracker operation problem

Pharmaceutical case studies

- Case study 1: supply chain advantages of advanced process analytics and digital release
- Case study 2: application of MPC at supply chain level

Interaction between process and supply chain levels: Comparison of two supply chain responses

- Pharmaceutical process
 - primary production has five synthesis stages
 - two secondary manufacturing sites
- Two different recipes
 - Case A: QbT: QC (analysis) at the end of each synthesis stage and the final products (6 QC checks)
 - Case B: QbD and PAT: QC only for the product of the primary process (AI), and the final product (2 QC checks)

Inventory variation for one SKU 6versus 2 QC points

Case A – extra delays cause poor responsiveness

Case B

Important to consider supply chain performance when designing processes – use process analytics/digital release rather than lab-based analysis where possible

Control: Results of standard ("feedback") policy

Inventory Level of AI in Europe

Deliveries of AI to Asia & America

Standard policies introduce internal dynamics and large upstream fluctuations

*

Results of planning/model predictive control approach Inventory of the packs

Improved operation for existing chains

- Supply chain is not logistics
- Process industry supply chain strongly affected by flexibility and responsiveness of manufacturing process
- Manufacturing processes have not traditionally been designed with supply chain performance in mind
- Scope for "process design for supply chain responsiveness"
 - E.g. lean, worldscale manufacture of intermediates, mass customisation of final products
 - Process intensificiation and improved control:
 - Operation of processes at intrinsic rates to increase manufacturing velocities
 - Many processes much slower than they need to be
 - Flexible, multipurpose plant of the future...

Improved operation for existing chains

- New pressures:
 - Desire to move from product-oriented business to service-oriented business
 - providing life-cycle solutions for customers
 - perception of higher margins and USPs
 - Need to respond ever more rapidly to changing market circumstances
 - shorter product life-cycles
 - Aim of mass customisation
 - E.g. designer drugs which are tailored to small populations
 - existing pharmaceutical supply chains are inappropriate
 - Need to evaluate, report and improve sustainability and environmental and social impacts throughout the supply chain
 - cf. "REACH"
 - Anticipate and respond to future regulation and compliance requirements
 - E.g. responsibility to recover and recycle consumer products at q

Design of new supply chains

- Supply chains of the future:
 - Hydrogen, and more generally, supply chains to support fuel cells
 - Water
 - Fast response therapeutics (particularly vaccines)
 - Clean Energy: significant pressures for decarbonisation
 - Life science products; customised healthcare
 - Crops for non-food use and biorefineries
 - Waste-to-value and reverse production systems (closed loop supply chains)
- Generic issues
 - Dealing with complexity and scale
 - Consideration of both business processes and physical processes;
 - Dealing with extended enterprises with different information structures and cultures
 - Accounting for significant, often structural, future uncertainties related to strategic decisions

Example: Personalised healthcare

London

Example: closed loop supply

chains

Some 21st century challenges

- Sustainability
 - New energy and material sources
 - Cleaner exploitation of existing sources
 - □ Increasing scarcity of other resources (H₂O, P, Cu,...)
 - Decarbonised supply chains
 - Waste
- Healthcare
 - Affordable
 - Customised
 - □ Safe
- Innovation
 - How can engineering and production respond to rapid advances in science?
 - □ How to mass customise innovative products?

